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1 Introduction

Properties of porous media, such as hydraulic conductivity and porosity, are
intrinsically deterministic. However, due to the high cost associated with direct
measurements, these properties are usually measured only at a limited number
of locations. The number of direct measurements is definitely not enough to
infer the true parameter fields. This problem is further complicated by the
fact that medium properties exhibit a high degree of spatial heterogeneity.
This combination of significant spatial heterogeneity and a relatively small
number of direct observations leads to uncertainty in characterizing medium
properties, which in turn results in uncertainty in estimating or predicting
the corresponding system responses (such as hydraulic head). Fortunately, it
is relatively easy to measure the system responses, which can be used to infer
medium properties. With newly developed measurement techniques such as
remote sensing and in-situ permanent sensors, more observations on system
responses become available.

Large efforts have been made to take the advantage of all available
observations, both the limited number of direct measurements of medium
properties and a larger amount of observations of system responses, to
obtain better estimates of the primary parameters of the porous media,
thereby reducing the uncertainty associated with model predictions. In hy-
drology, many inverse models have been developed for aquifer characteriza-
tion [29, 19, 4, 2, 14, 31, 37, 12, 18, 35, 23]. Review and comparison of some
of these inverse models can be found in [36, 11, 26, 41]. In these models, the
best estimate of a medium property is obtained by minimizing the mismatch
between the estimated values and observed ones. However, these models are
not capable of incorporating measurements dynamically, which means that,
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if new data are available at a time, one has to run the inverse models again
from the very beginning.

Recently, a number of sequential inverse methods (history matching in
petroleum enginnering) have been proposed, which is basically extended from
the optimal control theory of Kalman filter. These methods include Extended
Kalman filter (EKF), Ensemble Kalman filter (EnKF), and their variants.
The common ground of these methods is their capability of incorporating
observations sequentially, which results in a significant reduction of the num-
ber of data dealt at any given time. An up-to-date system, consisting of a
best estimate and the corresponding uncertainty represented by a state er-
ror covariance matrix, is always provided by these sequential methods. The
fundamental difference among these methods is the way by which the state er-
ror covariance matrix is estimated. The EKF uses the first-order linearization
approach and needs to keep track of the whole covariance function, which is
computationally expensive for large-scale problems. The EnKF employs the
Monte Carlo method, in which the covariance matrix is updated from a small-
sized ensemble (a small number of realizations). Some literature shows that
for large-scale highly nonlinear problems the EnKF is superior to the EKF in
terms of both efficiency and accuracy [6, 17, 7].

The EnKF is conceptually simple, easy to implement, and capable of ac-
counting for different types of models and observation noises, and its compu-
tational cost is relatively low compared to other approaches. The method has
been used in a large number of applications in various fields such as meteorol-
ogy, oceanography, hydrology, and reservoir engineering [6, 7, 13, 20, 28, 27].
The size of the ensemble is crucial for the EnKF, because the standard de-
viation of the sampling errors of the Monte Carlo method converges very
slowly at a rate inversely proportional to the square root of the sample size.
To reduce the sampling error by a factor of two, the number of Monte Carlo
simulations has to be increased by a factor of four. If the observations are
not perfect, the sampling error also appears in the ensemble of observations,
since the EnKF needs a set of perturbed observations to model the observa-
tion noise. In general, a small ensemble induces a large sampling error, which
tends to underestimate the state error covariance; a large ensemble leads to
computational inefficiency.

Many methods have been proposed to reduce the sampling error associ-
ated with the small-sized ensemble in the EnKF. Ensemble square root filter
attempts to avoid the perturbed observations by using different Kalman gains
to update the ensemble mean and the deviation from the ensemble mean [34].
Anderson and Anderson [1] used a parameter to broaden the ensemble spread.
Double Ensemble Kalman filter divides the ensemble into two parts, and uses
the Kalman gain calculated from one ensemble to update the other. These
methods showed promising results even with relatively small number of en-
semble members. On the other hand, these methods are application-dependent
and some parameters are difficult to quantify. Extra effort may need to tune
these parameters in order to obtain reasonable results.
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For high-resolution, large-scale problems, the dimension of the state in
general is fairly large. One major problem of various Kalman filter methods
comes down to how to efficiently approximate the state error covariance func-
tion in each update with a dimension-reduced approach. The EnKF is one
type of dimension-reduced approaches since the number of ensemble mem-
bers is in general smaller than the dimension of the state. There are other
attempts that estimate the state error covariance matrix by selecting some
principal modes of the state vector, for instance, singular evolutive extended
Kalman filter (SEEK) [30], reduced rank square root filter (RRSQRT) [33],
and partially orthogonal ensemble Kalman filter (POEnKF) [16].

Recently, Zhang et al. [40] developed a KL-based Kalman filtering scheme
(KLKF), which is a type of dimension-reduced Kalman filtering method based
on the Karhunen-Loève (KL) expansion of a medium property and orthogonal
polynomial decompositions of dependent variables. In the KLKF method, the
covariance of the medium property is efficiently approximated by a small set
of eigenvalues and eigenfunctions attributed to the mean square convergence
of the KL decomposition. Compared to the full covariance matrix, the finite
number of modes used to approximate the covariance represents a significant
reduction in random dimensions. In this updating procedure, the forward
problem is solved with a moment method based on Karhunen-Loève decom-
position (KLME), from which the mean and covariance of the state variables
can be constructed, when needed. The statistics of both the medium proper-
ties and system responses are then updated with the available measurements
at the current time using the auto- and cross-covariance obtained from the
forward step. They used a synthetic 2-D example to demonstrate the capa-
bility of this new method for a stationary conductivity field and compared
the results with those from the EnKF method. Their numerical results show
that the KLKF method is capable of significantly reducing the required com-
putational resources with satisfactory accuracy, which indicates the potential
applicability of this approach to high-resolution, large-scale predictive models.

This chapter is organized as follows: The problem being addressed is de-
scribed in detail in Section 2. Section 3 provides some basic concepts and
formulations of the data assimilation methods. The Karhunen-Loève decom-
position for both stationary and nonstationary hydraulic conductivity fields
is given in Section 4. The KL-based moment method for solving the first-oder
head and head covariance is outlined in Section 5. In Section 6, the KL-based
Kalman filtering scheme is introduced, including a detailed description on up-
dating hydraulic conductivity, head field, and eigenvalues of eigenfunctions
of the conditioning covariance. The KLKF method is illustrated using a syn-
thetic example in Section 7, with a detailed discussion on the accuracy and
efficiency of the method as compared with the EnKF method. The chapter
concludes in Section 8 with a short summary and discussion.
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2 Statement of the Problem

We consider transient fluid flow in a heterogeneous porous medium satisfying
the following governing equation:

∇ · [Ks(x)∇h(x, t)] + g(x, t) = Ss
∂h(x, t)

∂t
, (1)

subject to initial and boundary conditions:

h(x, 0) = H0(x), x ∈ D, (2)

h(x, t) = H(x, t), x ∈ ΓD, (3)

Ks(x)∇h(x, t) · n(x) = −Q(x, t), x ∈ ΓN , (4)

where Ks(x) is the hydraulic conductivity, h(x, t) is the pressure head, g(x, t)
is the source/sink term, Ss is the specific storage, H0(x) is the initial head in
the domain D, H(x, t) is the prescribed head on Dirichlet boundary segments
ΓD, Q(x, t) is the prescribed flux across Neumann boundary segments ΓN ,
and n is an outward vector normal to the boundary Γ = ΓD ∪ ΓN . Here the
hydraulic conductivity is considered as a spatially-correlated random variable,
while specific storage Ss is treated as a deterministic constant because of its
relatively small variability. For simplicity, it is assumed that both initial and
boundary conditions are deterministic.

Since Ks is a random function, the flow equations become stochastic partial
differential equations, which can be solved through several approaches, such
as Monte Carlo simulations, the moment-equation approach [38], and the KL-
based moment method (KLME) [39, 21, 22]. All Kalman filter methods need
to solve the forward problem, i.e., (1)-(4). The EnKF uses the Monte Carlo
simulations to obtain the covariance of the state variable (pressure head),
while the KLKF uses the KLME to conduct forward modeling. It has been
shown that the KLME method is computationally more efficient than the
Monte Carlo simulations [22], which makes it possible to develop an efficient
algorithm that takes advantages of both the Kalman filter and the KLME
methods.

The hydraulic conductivity is assumed to follow a log normal distribution
(see a detailed review in [32]), and we work with the log-transformed variable
Y (x), given as:

Y (x) = ln Ks(x) = 〈Y (x)〉+ Y ′(x), (5)

where 〈Y (x)〉 is the ensemble mean of Y (x), representing a relatively smooth
unbiased estimate of the unknown random function Y (x), and Y ′(x) is the
zero-mean fluctuation.

Suppose we have NY direct measurements of the log hydraulic conductiv-
ity Y1, Y2, · · ·, YNY

, taken at locations x1, x2, · · ·, xNY
, and Nh pressure head

measurements located at χ1, χ2, · · ·, χNh
, measured at some time intervals.

As mentioned earlier, many inverse models are not capable of dynamically
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updating parameter fields. In the following sections, we describe an efficient
algorithm to characterize medium properties by dynamically incorporating
these measurements when they become available. During this data assimila-
tion process, the stochastic differential flow equation is solved forward with
time; while the mean and fluctuation of the hydraulic conductivity are modi-
fied together with the computed pressure head to honor all the observations
at various times.

3 Basic Concepts of Data Assimilation

Data assimilation is a dynamically-updating process, in which estimates
of model parameters and state variables are updated by requiring consis-
tency with observations and governing flow equations. With newly developed
measurement techniques such as remote sensing and in-situ permanent sen-
sors, more observations become available. However, observations from these
techniques are usually indirectly related to model parameters, which are of
the most interest in hydrological applications. Moreover, measurements may
be corrupted by noise from either known or unknown sources. A suitable
approach is necessary to reconcile information from multiple sources. The
Kalman filter is a widely used sequential data assimilation method for ob-
taining a least squares estimation of the state vector of the system [8]. It is
capable to take into account various types of observations when they become
available.

The Kalman filter addresses the general problem of estimating the state
vector S ∈ <n, which represents the state of the system, including model
parameters (e.g., hydraulic conductivity) and dependent variables (e.g., hy-
draulic head). There are two major stages in the Kalman filter procedure,
forecast and assimilation [3]. The forecast stage updates the state vector S
and the covariance matrix P:

Sf (i) = Φ Sa(i− 1) + e1(i), (6)
Pf (i) = Φ Pa(i− 1)ΦT + R1(i), (7)

where i is the time step, superscripts f and a stand for forecast and assim-
ilation stages, respectively, Φ is a linear transition matrix that forwards the
state vector at time i − 1 to the current time i, and e1 represents the pro-
cess error, which is a random vector with zero mean and covariance R1. The
forecast model will keep on running with time until new observations become
available. Once new data are available, the assimilation stage starts, which
can be expressed mathematically as

G(i) = Pf (i)HT
[
H Pf (i)HT + R2(i)

]−1
, (8)

d(i) = H St(i) + e2(i), (9)
Sa(i) = Sf (i) + G(i)

[
d(i)−H Sf (i)

]
, (10)

Pa(i) = [I−G(i)H]Pf (i), (11)
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where H is a measurement operator that relates the state vector and observa-
tions d, superscript T stands for matrix transpose, and e2 is the measurement
error that has a zero mean and error covariance matrix R2. The first step in
the assimilation stage is to compute the Kalman gain G(i) using (8), and then
observations d are taken using (9). The next step is to compute a posterior
estimate of the state vector in (10) by incorporating new observations, and
then update a posterior error covariance from (11).

The standard Kalman filtering scheme as described above requires com-
puting and storing the error covariance matrix of state variables, which is
computationally expensive for large-scale problems (say, with millions of or
even more grid nodes). To alleviate this problem, ensemble Kalman filter
(EnKF), a variant of Kalman filter, has been developed [6]. In the EnKF, one
keeps track of a limited number of realizations, rather than the covariance
matrix as in the standard Kalman filter. At each update, the required subset
of the covariance matrix is then obtained from these realizations. Owing to
its conceptual simplicity, relative ease in implementation, and the ability to
account for possible model noises/errors, the EnKF has been found useful in
a large number of applications in various fields such as meteorology, oceanog-
raphy, hydrology, and reservoir engineering [7, 27, 28, 13]. The computational
cost of the EnKF is relatively low (if only a small number of realizations is
used) compared to other Kalman filters. The EnKF is essentially a Monte
Carlo method, depending on the number of realizations. The goodness of the
covariance function approximated from an ensemble strongly depends on the
number of realizations used in the ensemble, and the appropriate number of
realizations may depend on the nature of the problems and may not be known
a priori.

One major problem of various existing Kalman filtering methods is how
to efficiently compute and store the covariance function in each update. Their
substantial requirement on computational resources prevents us from applying
them to high-resolution, large-scale simulation problems.

In this chapter, we introduce an efficient, dimension-reduced Kalman filter-
ing scheme based on Karhunen-Loève expansions of the medium property and
orthogonal polynomial decompositions of the state variable [40]. The covari-
ance of the medium property is effectively approximated by a small number
of eigenvalues and eigenfunctions using the Karhunen-Loève (KL) decompo-
sition. The same number of first-order head fields (modes) are solved and
stored in each update. Compared to the full covariance matrix in the EnKF,
the finite number of head modes used to approximate it represents a signif-
icant reduction in random dimension. The reconstruction of the covariance
functions from the KL decomposition of Y (x) and the first-order head modes
can be done whenever needed. In each update, the forward problem is solved
using an efficient KL-based moment method [39] that gives a set of functions
from which the mean and covariance of the state variables can be constructed,
when needed. The statistics of both the medium property and the system re-
sponses are then efficiently updated with the available measurements at this
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time using the auto- and cross-covariances obtained from the forward mod-
eling. The KL-based Kalman filter (KLKF) will significantly reduce required
computational resources (both computational time and storage) and allows
us to efficiently incorporate continuous observations into high-resolution pre-
dictive models for flow and transport in large-scale problems.

4 Karhunen-Loève Decomposition

For a stochastic process Y (x, ω) = lnKs(x, ω), where x ∈ D and ω ∈ Ω
(a probability space), the covariance function CY (x,y) = 〈Y ′(x, ω)Y ′(y, ω)〉
is bounded, symmetric, and positive definite, thus it can be decomposed as
[9, 10, 39].

CY (x,y) =
∞∑

m=1

λmfm(x)fm(y), (12)

where m is the index of modes, λm and fm are eigenvalues and deterministic
eigenfunctions, respectively. The eigenvalues and eigenfunctions can be solved
from the following Fredholm equation

∫

D

CY (x,y)f(y)dy = λf(x). (13)

The set of eigenfunctions are orthogonal and form a complete set
∫

D

fn(x)fm(x)dx = δmn, (14)

where δmn is the Kronecker delta, δmn = 1 for m = n and 0 otherwise. In
addition, it can be shown from (12) that the summation of all eigenvalues
equals the total variability of Y (x),

∑∞
n=1 λn =

∫
D

σ2
Y (x)dx. One may sort

the set of eigenvalues λm in a non-increasing order, and the corresponding
eigenfunctions then exhibit a decreasing characteristic scale as the index m
increases [9, 39]. The stochastic process Y (x) then can be expanded as:

Y (x) = 〈Y (x)〉+
∞∑

m=1

ξm

√
λmfm(x), (15)

where ξm are orthogonal random variables, i.e., 〈ξm〉 = 0 and 〈ξmξn〉 = δmn.
In the case of normally distributed Y , ξm are standard Gaussian random
variables. It has been shown that the KL expansion, i.e., (15), is of mean
square convergence and may be well approximated with a finite summation.
By truncating (15), one in fact ignores some small-scale variability of Y . The
number of modes required for accurately approximating Y ′(x) depends on the
ratio of the correlation length to the dimension of the domain [39]. In many
cases, the magnitude of eigenvalues decays very fast, which means that Y can
be approximated using a small number of terms.
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Note that stationarity of the process Y (x) is not required in the above
derivation. Suppose the simulation domain D is partitioned into K non-
overlapping subdomains D = ∪K

k=1Dk and Dm ∩ Dn = φ for m 6= n, where
φ stands for the null set, and accordingly the log hydraulic conductivity field
can be written as

Y (x) = ln Ks(x) =
K∑

k=1

Yk(x)ψk(x), (16)

where Yk(x) = ln Ks(x) is a spatial random function defined in subdomain
Dk, and ψk(x) is a deterministic indicator function given as ψk(x) = 1 for
x ∈ Dk and ψk(x) = 0 otherwise. Lu and Zhang [25] developed an algorithm
for computing eigenvalues and eigenfunctions for the nonstationary hydraulic
conductivity field. The procedure can be summarized as follows:

• Equation (13) is solved for each individual zone Dk to obtain eigenvalues
{λ(k)

n , n = 1, 2, · · ·} and eigenfunctions {f (k)
n (x), n = 1, 2, · · ·};

• Extend the domain of f
(k)
n (x) from Dk to the entire domain D by defining

f
(k)
n (x) = 0 for x /∈ Dk;

• Merge K sets of eigenvalues together {λ(k)
n , k = 1, K, n = 1, 2, · · ·} and

sort them in a non-increasing order (denoting the sorted series as λk,
k = 1, 2, · · ·);

• Arrange the set of merged eigenfunctions {f (k)
n , k = 1,K, n = 1, 2, · · ·}

based on the sorted eigenvalues and denote the new set of eigenfunctions
as fk(x), k = 1, 2, · · ·.

The KL decomposition of the mean-removed stochastic process Y ′(x) for both
stationary and non-stationary hydraulic conductivity fields can be written as

Y ′(x) =
∞∑

n=1

ξn

√
λnfn(x). (17)

The hydraulic conductivity field conditioned on some direct measurements
is a special kind of nonstationary field. Lu and Zhang [21] developed a method-
ology to efficiently update eigenvalues and eigenfunctions of the covariance of
the hydraulic conductivity field. Since the set of eigenfunctions are complete,
the basic idea of this updating scheme is to express the conditional eigenfunc-
tions as linear combinations of the unconditional eigenfunctions and derive
equations for the coefficients of these linear combinations. By doing so, the
problem of finding the eigenvalues and eigenfunctions of a conditional covari-
ance function C

(c)
Y (x,y) reduces to the problem of finding the eigenvalues and

eigenvectors of an NY × NY symmetric matrix, where NY is the number of
conditioning points, which in general is small. The computational cost of find-
ing conditional eigenvalues and eigenfunctions in this way is much less than
that of directly solving (13). This updating scheme is a critical component of
the KLKF method described in Section 6.
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5 KL-based Moment Equations

The Kalman filtering method requires to compute the covariance matrix of
the system response, i.e., the P matrix in (6)-(11). In the EnKF, this is accom-
plished by running a series of forward modeling using a number of realizations.
In the KLKF method, the covariance of head is derived from forward mod-
eling using the KL-based moment method (KLME). The KLME has been
described in detail in [39, 21, 22]. For completeness, a brief description is
given as follows.

Since the dependent variable h(x, t) is a function of the input variabil-
ity σ2

Y (x), one may formally express h(x, t) as an infinite series h(x, t) =∑∞
m=1 h(m)(x, t), where the order of each term in this summation is with re-

spect to σY , the standard deviation of Y . We only keep the first two terms in
this series, and the KLKF method described here is based on the first-order
approximation of the pressure head. By substituting the expansions of h(x, t)
and Y into (1), we obtain the governing equations for zeroth-order pressure
head h(0)(x, t)

∇ ·
[
KG(x)∇h(0)(x, t)

]
+ g(x, t) = Ss

∂h(0)(x, t)
∂t

, (18)

h(0)(x, 0) = H0(x), x ∈ D, (19)
h(0)(x, t) = H(x, t), x ∈ ΓD, (20)

KG(x)∇h(0)(x, t) · n(x) = −Q(x, t), x ∈ ΓN , (21)

and for the first-order pressure head term h(1)(x, t),

∇ ·
[
KG(x)∇h(1)(x, t)

]
+ g(1)(x, t) = Ss

∂h(1)(x, t)
∂t

, (22)

h(1)(x, 0) = 0, x ∈ D, (23)
h(1)(x, t) = 0, x ∈ ΓD, (24)

KG(x)∇h(1)(x, t) · n(x) = Q(x, t)Y ′(x), x ∈ ΓN , (25)

where KG is the geometric mean of the Ks, and

g(1)(x, t) = SsY
′(x)

∂h(0)(x, t)
∂t

+ KG(x)∇Y ′(x) · ∇h(0)(x, t)− g(x, t)Y ′(x).

(26)

Equations for higher-order mean head and head covariance can be found in
[39, 21, 22, 24]

Equations (18)-(21) are the governing equations and initial and boundary
conditions for the zeroth-order conditional mean head. In the conventional
moment method, the equations for the first-order (in terms of σ2

Y ) head co-
variance can be derived from (22)-(25) upon multiplying these equations by
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h(1)(χ, τ) and taking the ensemble mean. It has been shown that the conven-
tional moment method is computationally expensive, especially for large-scale
problems [22]. In fact, to solve the pressure head covariance up to the first
order (in σ2

Y ) using the conventional moment-equaiton method, it is required
to solve the sets of linear algebraic equations with N unknowns (N being
the number of nodes in the numerical grid) for 2N times: N times for solv-
ing the cross-covariance CY h and N times for the covariance Ch. Solving the
pressure head covariance with higher-order corrections is possible, but the
computational effort is very demanding. For instance, solving the pressure
head covariance up to the second order in terms of σ2

Y requires solving sets of
linear algebraic equations with N unknowns for N2 times.

In the KLME method, instead of dealing with h(1) directly from (22)-(26),
we further assume that the first-order head can be exprssed as a polynomial
expansion in terms of the orthogonal random variables ξm:

h(1)(x, t) =
∞∑

m=1

ξmh(1)
m (x, t), (27)

where h
(1)
m are deterministic, first-order head with mode m. After substituting

this expansion and the KL decomposition of the log hydraulic conductivity,
i.e., (17), into (22)-(26) and recalling the orthogonality of random variables
ξm, we obtain sets of governing equations for deterministic coefficients h

(1)
n :

∇ ·
[
KG(x)∇h(1)

n (x, t)
]

+ g(1)
n (x, t) = Ss

∂h
(1)
n (x, t)
∂t

, (28)

h(1)
n (x, 0) = 0, x ∈ D, (29)

h(1)
n (x, t) = 0, x ∈ ΓD, (30)

KG(x)∇h(1)
n (x, t) · n(x) = Q(x, t)

√
λnfn(x), x ∈ ΓN , (31)

where

g(1)
n (x, t) =

[
Ss

∂h(0)(x, t)
∂t

− g(x, t)
]√

λnfn(x)+KG(x)
√

λn∇fn(x)·∇h(0)(x, t).

(32)
Here the source term g

(1)
n and the flux bounday term in the right side of

(31) represent the effect of heterogeneity of the hydraulic conductivity. Note
that (28)-(32) are driving by terms that are proportional to

√
λn. Since

√
λn

decreases quickly, the first-order head h(1) in (27) can be approximated by
a limited number of terms, say M terms. It is worthy to point out that the
zeroth-order head equation and the M sets of equations for coefficients h

(1)
n

(totally there are M +1 sets of equations) have the exactly same structure as
the original flow equation. By changing the input parameters, the KL-based
moment equations can be solved easily with existing flow simulators, such as
MODFLOW [15].
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Once the coefficients h
(1)
n , n = 1,M , are solved, we only need to store an

M ×N matrix rather than an N ×N full matrix Ch. The head covariance as
well as the cross-covariance between the head and the log hydraulic conductiv-
ity, which are required in the data assimilation process, can be approximated
up to first order in terms of σ2

Y whenever needed:

CY h(x;y, τ) =
M∑

m=1

√
λmfm(x)h(1)

m (y, τ), (33)

Ch(x, t;y, τ) =
M∑

m=1

h(1)
m (x, t)h(1)

m (y, τ). (34)

The accuracy of the KLKF method highly depends on how well one can ap-
proximate CY h and Ch from (33)-(34). Zhang and Lu [2004] showed that,
when the unconditional variability σ2

Y is small, these first-order approxima-
tions are close to the true solutions. However, if the variability σ2

Y is large
(say, σ2

Y > 2.0), higher-order corrections are needed unless the correlation
length is small. In the latter case, first-order solutions are sufficiently accu-
rate, although in this case, the number of modes should be relatively large
[Zhang and Lu, 2004]. In general, the number of required modes depends on
the dimensionless size (in terms of the correlation length) of the domain. It is
our experience that 100 modes are enough for most of cases we examined.

6 KL-based Data Assimilation Methodology

The data assimilation process consists of a series of updating steps, each of
which represents the time when observations become available and/or the up-
dating process is operated. In this section, the time symbol t is suppressed,
because the discussion is based on any fixed assimilation step. Similar to the
EnKF, the KLKF requires to compute covariance functions CY , CY h, and
Ch, as presented in (12), (33), and (34). This implies that the eigenvalues and
eigenfunctions, as well as the first-order term h

(1)
n have to be updated at each

assimilation step, which in turn requires updating the mean hydraulic con-
ductivity field and the zeroth- and first-order head terms. Certainly, because
of conditioning, at each updating step, the covariance function of the log hy-
draulic conductivity is nonstationary and its eigenvalues and eigenfunctions
have to be solved numerically. It is well-known that solving eigenfunctions
numerically is computationally very expensive for large-scale problems. For
this reason, Zhang et al. [40] developed an algorithm that requires solving
the eigenvalue problem at the first time step and then efficiently updating
eigenvalues and eigenfunctions at the sequential assimilation steps.
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6.1 Updating mean hydraulic conductivity field

At each update step, for the given observations described in Section 2, the
updated mean and covariance of Y upon incorporating new observations can
be derived from the cokriging technique:

Y (0)(c)(x) = Y (0)(x) +
NY∑

i=1

αi(x)
[
Yobs(xi)− Y (0)(xi)

]

+
Nh∑

i=1

βi(x)
[
hobs(χi)− h(0)(χi)

]
, (35)

and

C
(c)
Y (xi,yj) = CY (xi,yj)−

NY∑
n=1

αn(xi)CY (xn,yj)−
Nh∑
n=1

βn(xi)CY h(yj , χn),

(36)
where the quantities with (without) superscript (c) stands for the values after
(before) incorporating observations at this time step, and αi(x) and βi(x) are
weighting functions, representing the relative importance of each measurement
Yobs(xi) and hobs(χi) in predicting the value of Y (0)(c)(x) at location x. The
observations Yobs(xi) and hobs(χi) may include noises:

Yobs(xi) = Y t(xi) + ζiεY , i = 1, NY (37)
hobs(χi) = ht(χi) + ζiεh, i = 1, Nh (38)

where Y t(xi) and ht(χi) are unknown true values at observation locations, ζi

are Gaussian random variables with zero mean and unit variance, and εY and
εh are the standard deviations of measurements errors of the log hydraulic
conductivity Y (x) and pressure head h(χ), which are assumed to be known.

The weighting functions in (35) are solutions of the following cokriging
equations:

NY∑

i=1

αi(x)CY (xi,xj) +
Nh∑

i=1

βi(x)CY h(xj , χi) = CY (x,xj), j = 1, NY , (39)

NY∑

i=1

αi(x)CY h(xi, χj) +
Nh∑

i=1

βi(x)Ch(χi, χj) = CY h(x, χj), j = 1, Nh. (40)

Note that coefficients αi and βi are location-dependent, which means that
equations (39)-(40) need to be solved for N times, where N is the number
of nodes in the domain. Follow [21], αi and βi can be directly related to
the eigenvalues, eigenfunctions, and the first-order head h(1). Since the set of
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eigenfunctions (no matter they are unconditional or conditional) is complete,
αi(x) and βi(x) can be expanded on the basis of these eigenfunctions:

αi(x) =
∞∑

k=1

αikfk(x), (41)

βi(x) =
∞∑

k=1

βikfk(x). (42)

Substituting (41)-(42) into (39)-(40), multiplying fm(x) on the both sides of
the resulted equations, and integrating the equations with respect to x over
the domain D, we obtain equations for αim and βim

NY∑

i=1

αimCY (xi,xj) +
Nh∑

i=1

βimCY h(xj , χi) = λmfm(xj), j = 1, NY , (43)

NY∑

i=1

αimCY h(xi, χj) +
Nh∑

i=1

βimCh(χi,χj) =
√

λmh(1)
m (xj), j = 1, Nh, (44)

where the cross-covariance CY h, auto-covariance of pressure head Ch, and
auto-covariance of the log hydraulic conductivity CY are given by (33), (34),
and (12), respectively. All these auto- and cross-covariance functions depend
on simulated time and thus need to be updated at each assimilation step. It
should be noted that (43)-(44) are solved only M times (in general M << N),
where M is the number of modes needed to approximate Y with a desired
accuracy. In addition, solving αim and βim will facilitate updating eigenvalues
and eigenfunctions, as described later.

6.2 Updating pressure head fields

The zeroth-order pressure head can be updated with both types of observa-
tions in the same manner:

h(0)(c)(x) = h(0)(x) +
NY∑

i=1

µi(x)
[
Yobs(xi)− Y (0)(xi)

]

+
Nh∑

i=1

ηi(x)
[
hobs(χi)− h(0)(χi)

]
, (45)

where µi(x) and ηi(x) are subject to:

NY∑

i=1

µi(x)CY (xi,xj) +
Nh∑

i=1

ηi(x)CY h(xj , χi) = CY h(xj ,x), j = 1, NY , (46)
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NY∑

i=1

µi(x)CY h(xi, χj) +
Nh∑

i=1

ηi(x)Ch(χi, χj) = Ch(x,χj), j = 1, Nh. (47)

Coefficients αim, βim, µi, and ηi in (43)-(44) and (46)-(47) can be computed
through solving a set of linear algebraic equations with the same coefficient
matrix. However, the condition number of this coefficient matrix could be
extremely large, especially after several assimilation steps, because assimilat-
ing observations will result in a great reduction of (co)variance. Due to the
ill-conditioned matrix, the truncation error will easily be amplified reflect-
ing on the anomalies. Dietrich and Newsam [5] analyzed the cause of the
ill-conditioning and proposed that adding a relaxation term (or an explicit
error matrix) to the coefficient matrix can resolve this problem. In general, a
relatively large relaxation term slows down the rate of convergence but with
the price of losing information, while a small value may lead to numerical
instability. The error matrix can be obtained through a maximum likelihood
approach for the purpose of improving the conditioning and minimizing the
loss of information. Yeh et al. [37] added a relaxation term to the diagonal
components of the matrix to reduce the condition number of the matrix, and
the relaxation term is a fraction of the maximum value of the coefficient ma-
trix. In the example shown in Section 7, a constant relaxation term is added to
the diagonal components of , which will be discussed further with illustrative
examples.

Similarly to the zeroth-order head term, the first-order pressure head is
updated by:

h(1)(c)(x) = h(1)(x)−
NY∑

i=1

µi(x)Y ′(xi)−
Nh∑

i=1

ηi(x)h(1)(χi) (48)

Because both Y ′ and h(1) can be expanded based on ξm, by substituting (17)
and (27) into (48), instead of updating h(1) directly, the coefficients h

(1)
m can

be updated as:

h(1)(c)
m (x) = h(1)

m (x)−
NY∑

i=1

µi(x)
√

λmfm(xi)−
Nh∑

i=1

ηi(x)h(1)
m (χi) (49)

It can be shown that to the first order, (49) recovers the usual cokriging
equation for the head covariance similar to (36).

6.3 Updating eigenvalues and eigenfunctions

Because of the non-stationality of the covariance matrix given in (36), the
conditional eigenvalues and eigenfunctions have to be solved numerically. Here
we follow the method in [21] with some modification to incorporate the influ-
ence of the pressure head measurements. By definition, the eigenvalues λ

(c)
m
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and their corresponding eigenfunctions f
(c)
m can be solved from (13) upon

replacing CY by the conditional covariance function C
(c)
Y . Because of high

computational cost in solving (13), this equation will be solved only at the
first assimilation step and the eigenvalues and eigenfunctions for any sequen-
tial step will be derived from the results at the previous step. Since the set
of eigenfunctions fm(x) computed at the previous assimilation step is com-
plete, the eigenfunctions f

(c)
m (x) at the current step (after assimilating new

measurements) can be expanded in terms of fm(x) as:

f (c)
m (x) =

M∑
p=1

dmpfp(x), m = 1,M (50)

where the coefficient matrix D = (dmp)M×M is to be determined. Substituting
this expression and (36) into (13), multiplying fm(y) on the both sides of the
derived equation, and integrating it with respect to y over the domain D,
yields:

λmdm −
M∑

k=1

(
NY∑

i=1

αikλmfm(xi) +
Nh∑

i=1

βikh(1)
m (χi)

)
dk = λ(c)

m dm,m = 1,M

(51)
It can also be expressed in a succinct matrix form as:

(
A− λ(c)I

)
D = 0 (52)

where

akm = λmδkm −
M∑

k=1

(
NY∑

i=1

αikλmfm(xi) +
Nh∑

i=1

βikh(1)
m (χi)

)
(53)

are components of A = (akm)M×M , λ(c) = diag(λ(c)
1 , · · · , λ(c)

M ), and I is an
M×M identical matrix. Therefore, the problem of finding the eigenvalues and
eigenfunctions of a nonstationary covariance matrix C

(c)
Y (x,y) of size N ×N

reduces to the problem of finding the eigenvalues λ(c) and eigenvectors d of an
M ×M matrix for M times, where N is the number of grid nodes, and M is
the number of modes. Note that the number of grid nodes N is usually much
larger than the number of modes M . Once D is solved, conditional eigenvec-
tor f

(c)
m corresponding to each conditional eigenvalue λ

(c)
m can be constructed

using (50). The updated eigenvalues and eigenvectors as well as the updated
pressure head terms in (45) and (49) are fed into the KLME forward model.
Since directly solving the Fredholm equation is computationally expensive, the
proposed algorithm for updating conditional eigenvalues and eigenfunctions
at each updating step has a significant advantage, and we only need to solve
the Fredholm equation at the first time step rather than at each assimilation
step.
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6.4 Karhunen-Loève based Kalman filter

The methodology described in the previous section has a different format than
the traditional Kalman filter, where the Kalman gain and the updating step
are formulated as:

G = PfHT [HPfHT + R]−1 (54)

Sa = Sf + G[d−HSf ] (55)

where K is the Kalman gain, H is the observation operator, R is the obser-
vation error covariance matrix, d is the observation vector, Sf is the forecast
state vector, Sa is the updated state vector, and Pf is the covariance ma-
trix of the forecast state vector. In fact, the cokriging based updating scheme
is exactly the same as the traditional Kalman filter. If we define the state
vector as S = (Y (y1), · · · , Y (yN ), h(y1), · · · , h(yN ))T , the Kalman gain can
be constructed with the coefficients αi(x), βi(x), µi(x), and ηi(x) described
before:

G =
[

Gα Gβ

Gµ Gη

]

2×N,NY +Nh

(56)

where Gα = (α1, · · · , αNY
), Gβ = (β1, · · · , βNh

), Gµ = (µ1(, · · · , µNY
), and

Gη = (η1, · · · , ηNh
). Note that each of αi, βi, µi, and ηi is a vector of N × 1.

The major difference between the KLKF approach and the cokriging
method is that the KLKF is a sequential or inline method, while cokrig-
ing is a statistical interpolation method, which only operates at a fixed time.
Sometimes cokriging is performed iteratively to account for the possible non-
linear effects in order to obtain a reasonable estimation, but the iteration is
still based on a certain time [37]. The KLKF uses the KLME method for ad-
vancing the system with time, and incorporates the observations at the time
when they become available and update the system at the same time. After
the current assimilation step, the updated system responses are taken as the
initial conditions for the next forward step. The updated model is then run
until the next set of observations become available, at which the updating
step will be performed again.

7 Illustrative Examples

In this section, a synthetic two-dimensional example is used to demonstrate
the applicability of the KLKF method in estimating the hydraulic conductivity
field by assimilating both pressure head and hydraulic conductivity measure-
ments. The results are then compared with those from the EnKF method in
terms of both the computational cost and accuracy [40].

The flow domain is a square of size Lx = Ly = 800[L](where L is any
consistent length unit), uniformly discretized into 40 × 40 square elements,
as shown in Figure 1. A pumping well and an injection well are placed at
(240[L], 160[L]) and (540[L], 560[L]), respectively, with a volumetric flow rate
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Fig. 1. The flow domain and the
observation locations for ln Ks(9 blue
squares) and h (both blue and red sym-
bols).
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Fig. 2. The reference log hydraulic
conductivity field

of 150 [L3/day]. Both wells are active throughout the entire simulation period
with constant flow rates. The two lateral boundaries are no-flow boundaries,
while the left and the right are Dirichlet boundaries with prescribed pressure
head of 202 [L] and 198 [L], respectively. Storage coefficient is assumed to be a
constant and taken as 0.0001. The log hydraulic conductivity field is treated as
a spatially-correlated Gaussian random field with zero mean and unit variance.
The unconditional hydraulic conductivity field is also assumed to be second-
order stationary characterized by a separable exponential covariance function

CY (x1,x2) = CY (x1, y1; x2, y2) = σ2
Y exp

[ |x1 − x2|
λx

− |y1 − y2|
λy

]
, (57)

where σ2
Y = 1.0 is the unconditional variance of Y , and λx = 200 [L] and

λy = 100 [L] are correlation lengths in x and y directions, respectively.
In this synthetic example, an unconditional realization of the log hydraulic

conductivity field is generated under given statistics using a random field gen-
erator based on the KL decomposition [39]. This field is then considered as
the “true” field, called the reference field, as shown in Figure 2. Nine samples
are taken from this reference field at selected locations as shown in Figure
1 (in blue) and these samples are considered as direct measurements of the
log hydraulic conductivity field. A forward transient simulation is conducted
using the reference hydraulic conductivity field. For this model setup, the
fluid flow reaches steady state at about t = 10 [day]. This period is chosen
as the duration of the total simulation time, which is then subdivided into
50 equally-sized time intervals with a size of 0.2 [day]. Twenty-five pressure
head measurements are then taken at selected locations (both blue and red
points in Fig. 1) at elapsed time t = 0.2 + 0.6k, k = 0, 1, · · · , 16. It is assumed
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that the hydraulic conductivity measurements are error-free, while the pres-
sure head observations are noisy and the measurement error follows a normal
distribution N(0, 2.5 × 10−3). The hydraulic conductivity measurements are
assimilated with the first set of pressure head measurements at t = 0.2 [day],
and after that only pressure head measurements are assimilated every 0.6 day.

The statistics (mean, variance, and correlation lengths) of the unknown
hydraulic conductivity field are usually inferred from its direct measurements.
It is often that the number of measurements is not sufficient to infer the true
statistics. As a consequence, in the KLKF method, the initial statistics of the
hydraulic conductivity field are taken as 〈Y 〉 = 0.0, σ2

Y = 1.2, λx = 220
[L], and λy = 120 [L], which are slightly different from the those statistics
used in generating the reference field. Initial eigenvalues and eigenfunctions
are solved using these statistics, and the impact of the number of modes has
been explored by approximating Y and h(1) with 50, 100, and 200 modes. For
the purpose of comparison, the EnKF method is also implemented with the
same initial statistics as in the KLKF method, and results from the EnKF
with 100, 200, and 1000 realizations are compared with those from the KLKF
to assess the accuracy and efficiency of the KLKF method.

7.1 Comparison of Accuracy

Two measures are commonly used to evaluate the accuracy of the Kalman
filtering schemes. The root mean square error (RMSE) is used to compare the
estimated Y field with the reference field, which is given as:

RMSE =

√√√√ 1
N

N∑

i=1

[Y ∗(xi)− Y t(xi)]
2
, (58)

where Y ∗ stands for the estimated value, Y t stands for the true reference
value, and N is the number of grid nodes.

Another measure is ensemble spread, which is the averaged variation of
the ensemble and is defined as

Spread =

√√√√ 1
N

N∑

i=1

V AR(xi) (59)

where V AR(xi) is the ensemble variance. If the EnKF estimates the uncer-
tainty of the state vector properly, the ensemble spread should be close to the
RMSE.

Figure 3(a) compares the RMSE of the KLKF and the EnKF methods
with a various number of realizations (or modes). The KLKF is operated
with a relaxation term ε = 0.3 for the cases with 50, 100, and 200 modes. It
is seen from the figure that with 100 principal modes the KLKF can properly
propagate the statistics of the real randomness, and the estimate is as good
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Fig. 3. (a) RMSE and (b) Ensemble spread of the KLKF and the EnKF as a
function of time for various number of modes and ensemble sizes.

as that from the EnKF method with 1000 realizations. The result from only
50 modes is not very stable, but it is comparable with the EnKF with 200
realizations. The KLKF with 100 and 200 modes give similar behavior of the
RMSE, which means that adding more modes beyond 100 modes may not
significantly improve the results. It is important to note that for this case the
EnKF with 100 realizations begins to diverge after the first assimilation step.

Figure 3(b) illustrates the ensemble spread of the EnKF with respect to
time, in comparison to the uncertainty estimated by the KLKF. Comparing
the values shown in Figure 3(b) with the corresponding values in Figure 3(a),
the ensemble spread systematically underestimates the real deviation due to
the limited size of the ensemble numbers. For instance, the EnKF with 100
realizations fails to reduce the RMSE after the first assimilation step, while the
ensemble spread keeps decreasing, indicating that the ensemble is converging
to a wrong solution. The estimated uncertainty of the KLKF with 200 modes
is equivalent to that of the EnKF with 1000 realizations, which results in the
similarity of their corresponding RMSE shown in Figure 3(a). However, the
RMSEs of the KLKF with 200 modes and 100 modes are close, and the KLKF
with 200 modes has a better estimate of the real deviation, which shows the
potential to further incorporate new observations.

The relaxation term used in the KLKF reduces the condition number of the
coefficient matrix in (43)-(44) and (46)-(47), and therefore improves stability
of the KLKF solution. Numerical experiments [40] show that the performance
of the KLKF is sensitive to the choice of relaxation term when the number of
modes is small, for instance 50. However, reasonable results can be achieved by
cautiously choosing the relaxation term for the KLKF with 50 modes (shown
in Figure 3(c)). With larger number of modes, the KLKF has satisfactory
performance as long as the relaxation term is changing within a reasonable
range. Sensitivity of model results on the relaxation term has been investigated
in [40]. In the KLKF approach, the log hydraulic conductivity measurements
are used only at the first assimilation step, and the relaxation term is only
added to the diagonal terms of the pressure head covariance matrix. If the
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Fig. 4. The estimated mean ln Ks fields (a) KLKF with 100 modes, (b) KLKF with
200 modes, and (c) EnKF with 1000 realizations.

direct measurements are assimilated with the pressure head observations at
every assimilation step, it is expected that a relaxation term needs to be added
to the diagonal components of both log hydraulic conductivity and pressure
head covariance matrices.

Zhang et al. [40] also investigated the impact of incorrect initial statistics
(comparing to those used in generating the reference field) on the final assim-
ilation results. Their study indicates that the impact is minor if the number
of modes included in the KLKF method is enough, for example, 100 modes.

The contours of the log hydraulic conductivity fields estimated from the
KLKF method with different numbers of modes are shown in Figure 4. Also
compared in the figure is the estimated field using the EnKF method with
1000 realizations. Compared to the reference field (Fig. 2), the contours from
the KLKF are smoother. The KLKF with 50 modes (not shown here) fails to
catch the right locations of the major pattern of the reference field, while the
KLKF with 100 modes almost identifies every primary structure. The con-
tour of the EnKF also recovers the major pattern with more details than the
KLKF fields. However, these small features do not exactly replicate those of
the reference field. The contours of the associated log hydraulic conductivity
variance are shown in Figure 5. Comparing the KLKF results with 100 modes
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Fig. 5. The estimated ln Ks variance (a) KLKF with 100 modes, (b) KLKF with
200 modes, and (c) EnKF with 1000 realizations.

and 200 modes reveals that the variance of the estimated ln Ks field is higher
if more modes are included in data assimilation. The major patterns of esti-
mated fields from the KLKF and the EnKF are close. For the EnKF, although
the log hydraulic conductivity measurements are only assimilated at the first
assimilation step, the variances remain lowest at those locations. However,
this feature is not very obvious in the KLKF, which may be attributed to the
effect of the relaxation term.

Figure 6 compares the reference field and the estimated log hydraulic con-
ductivity field from the KLKF with 100 modes at several elapsed times. The
figure shows that with time (and available observations), the estimated field
becomes closer to the reference field.

In order to test the predictability of the model using the estimated hy-
draulic conductivity field, we run a deterministic flow simulation from the t
= 0 [day] to t = 20 [day] using the final estimated log hydraulic conductivity
field (at 10th day) from the KLKF with 100 modes as the initial input. The
calibrated pressure head at t = 5 [day] and the predicted head at t = 20 [day]
are illustrated in Figure 7 (dashed contour lines) as compared to the reference
pressure head field (solid contour lines), which is computed using the reference
hydraulic conductivity field. Apparently, both head fields match very well.
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Fig. 6. Comparison between the estimated ln Ks from the KLKF with 100 modes
and the reference at different times. (a) 0.2 day, (b) 2.0 day, (c) 5.0 day and (d) 10.0
day.

7.2 Computational Efficiency

If M modes are used in the KLKF, the flow equation needs to be solved for
M +1 times (once for the zeroth-order head term h(0)(x) and M times for the
first-order head terms h

(1)
m (x)), while for the EnKF with the ensemble size of

K, the similar equation needs to be solved for K times. Since the CPU time
for solving the pressure head term in the KLKF is about the same as that
for one realization in the EnKF method, the computational efficiency for the
two methods simply depends on how many modes in the KLKF method (or
realizations in the EnKF method) are needed to approximate the statistics
of the state. The illustrative example showed that the KLKF can achieve
satisfactory estimation with a relatively small computational cost.



KL-based Kalman Filter 23

120

180

190
194

202

207

260

180

190

194

202

207

X

Y

0 200 400 600 800
0

200

400

600

800

(a)

160

194

20
0

200

207

220

10
0

180

19
4

200

207

240

X

Y

0 200 400 600 800
0

200

400

600

800

(b)

Fig. 7. Comparison of the pressure head fields computed using the reference ln Ks

field (solid lines) and those computed using the estimated mean ln Ks field from K
LKF with 100 modes (dashed lines). (a) pressure head at day 5 and (b) pressure
head at day 20.

8 Summary and Conclusion

The Kalman filter based sequential data assimilation methods have been
widely used in solving the inverse problem recently. These methods are capa-
ble of updating the system parameters continuously and sequentially with the
availability of the measurements of the system responses. In these methods,
both the best estimate and the corresponding uncertainty are advanced with
time. A major problem associated with these existing Kalman filter based
methods is the high computational cost in updating the state error covariance
matrix. In this chapter, the Karhunen-Loève based Kalman filter (KLKF) is
introduced. The hydraulic conductivity field is treated as a random spatial
function and is decomposed using the KL expansion. The pressure head is
expanded using the perturbative polynomial expansion. On the basis of these
expansions, the higher-order terms are truncated and the KLKF is based on
the first-order approximation of the pressure head. The KLKF utilizes only
a small number of principal modes to propagate the statistics of the state
vector, which greatly reduces the computational cost. The forward step can
be solved accurately and efficiently using the Karhunen-Loève based moment-
equation method (KLME), which can be solved in parallel using any existing
flow model. The data assimilation step is operated based on the state statistics
given by the forward step and the observations. A synthetic two-dimensional
example shows that the KLKF method is better than the EnKF method in
terms of both computational efficiency and accuracy. The example indicates
that the estimated conductivity field using the KLKF method with 100 modes
is reasonably close to the true reference conductivity field and the pressure
head predicted using the estimated field agrees well with the reference head
field.
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9 Nomenclature

Ch = covariance of pressure head h
CY = covariance of Y = ln Ks

CY h = cross-covariance between Y and h
D = the simulation domain (or its size)

Dm = subdomain
d = observation vector

e1, e2 = error vectors
f, fm, f

(k)
n = eigenfunction
G = Kalman gain
g = source/sink

g
(k)
n = nth mode of the kth-order source/sink
H = prescribed head at constant head boundary

H0 = initial head in the domain
H = observation operator

h(k) = kth-order pressure head
h

(k)
n = nth mode of the kth-order pressure head
I = identical matrix

K = number of subdomains
Ks = hydraulic conductivity
KG = geometric mean of the hydraulic conductivity
M = number of modes
N = number of grid nodes

NY = number of log hydraulic conductivity observations
Nh = number of pressure head observations
n = an outward unit vector normal to external boundaries
P = covariance matrix of the state vector

R1,R2 = covariance matrix of error vectors e1, e2

S = state vector
Ss = specific storage

t = time
x,y = Cartesian coordinate vectors
xi = measurement locations of hydraulic conductivity
Y = log hydraulic conductivity
Y ′ = zero-mean fluctuation of Y
Yk = log hydraulic conductivity in zone k
ΓD = Dirichlet boundary segments
ΓN = Neumann boundary segments
Φ = linear transfer matrix

αi, βi = weight coefficients in cokriging estimate of Y
δmn = Kronecker data

εY , εh = standard deviation of measurments errors on Y and h
ζ = standard Gaussian random variable

λ, λm, λ
(k)
n = eigenvalue

λx, λy = correlation lengths in x and y directions
µi, ηi = weight coefficients in cokriging estimate of h

ξm = orthogonal Gaussian random variables
σ2

Y = variance of the log hydraulic conductivity
χi = head measurement locations
ψk = indicator function for zone k
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Subscript
Obs = observation

en = ensemble

Superscript
(c) = conditioned
f = forecast
u = updated
T = transpose
t = true
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